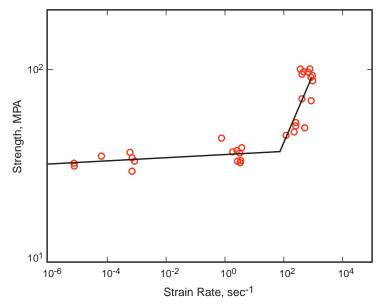


Material Behavior Under Impulsive Loading


Need

Strength and mode of deformation of rock and other brittle materials such as concrete and ceramic depend on the applied rates of stress or strain. The strength of rock generally increases gradually with increasing rate in the quasi-static regime (strain rates less than about $10^2\,\mathrm{sec^{-1}}$). For rates greater than about $10^2\,\mathrm{sec^{-1}}$ the effect of increased rate on brittle fracture stress is very strong. Little work has been done in the intermediate range, 10^{-2} to $10^2\,\mathrm{sec^{-1}}$. Some studies have missed the systematic variation of strength with rate in the high rate regime and have simply extrapolated quasi-static data over several orders of magnitude to a single value of "dynamic" strength. Others have found that the two regimes intersect at a well-defined critical strain rate where a very rapid change in the rate effect occurs. That is, fracture strength is a continuous function of strain rate over many orders of magnitude in strain rate, but the rate-of-change of strength with strain rate is nearly discontinuous and is located somewhere in the intermediate range. Strain rates associated with technological processes cover an enormous range from less than $10^{-10}\,\mathrm{sec^{-1}}$ for creep of mine pillars, to $1\,\mathrm{sec^{-1}}$ to several $100\,\mathrm{sec^{-1}}$ for cutting tool-rock interactions, all the way up to $10^3\,\mathrm{to}\,10^5\,\mathrm{sec^{-1}}$ for near-field explosive applications such as certain oil-well simulations or mine and quarry blasting. Thus, the critical strain rate falls within the range of technological application, and may play aninfluential role in

predictive modeling of such processes.

Description

Both conventional servo-controlled load machines and a split Hopkinson pressure bar (Kolsky bar) are used to investigate rate effects up to about 3000 sec⁻¹. Pulse shaping techniques allow access to lower rates in the Kolsky bar and a novel passive confinement technique provides data on the effect of confinement without the construction of active confining pressure system. Thus, the effect of strain rate on strength, the location of the critical strain rate, and the influence of confining pressure on the strain-rate effect are determined. The figure shows the effect of strain rate on the

Effect of Strain Rate on Strength of Tuff.

crater size and depth of penetration of earth penetrators have been improved by incorporating the strong strain rate effect above about $10^{-2} \, \text{sec}^{-1}$.

References

Olsson, W. A., The Compressive Strength of Tuff as a Function of Strain Rate from 10⁻⁶ to 10³ sec., International Journal of Rock Mechanics and Mining Sciences, vol. 28, pp. 115-118, 1991.

Contacts

William A. Olsson Geomechanics Department Sandia National Laboratories Albuquerque, NM 87185-0751 Telephone: (505) 844-7344

Fax: (505) 844-7354

e-mail: waolsso@sandia.gov